В треугольнике АВС ВС=4 см, АС=8 см, АВ=4√3 см. Точка Д - ...
В треугольнике АВС ВС=4 см, АС=8 см, АВ=4√3 см. Точка Д - середина стороны АС. Вычислите площадь треугольника АВД и расстояние от точки А до прямой ВД. помогите пожалуйста
Есть ответ
17.12.2022
341
Ответ
Данный треугольник АВС - прямоугольный,
АВ - гипотенуза,
АС и ВС - катеты.
На эту мысль наводит отношение длин катетов и стороны АВ.
ВС=АВ:2 Если предположение верно, то данное ниже равенство будет верным: АС=√(АВ²-ВС²)Подставим известные значения сторон:4√3 =√(64-16) √(64-16)=√48=4√3 Итак, мы доказали, что треугольник АВС прямоугольный.Продолжим прямую ВД за АС и проведем к ней перпендикуляр.
Он равен расстоянию от А до ВД и является высотой треугольника АВД.
Точку пересечения обозначим К.
Если в прямоугольных треугольниках острый угол одного равен острому углу другого, то такие треугольники подобны.
Углы при Д в них вертикальные и потому равны.
Углы АКД=ВСД=90°
Δ АДК и Δ ВСД подобны.АД=ДС по условию задачи.
АД и ДВ - гипотенузы этих треугольников. В треугольнике АКД известна сторона АД. В треугольнике ВСД известны два катета. Найдем ВД по теореме Пифагора:ВД²=ВС²+ДС²ВД =√(16+12)=√28=2√7ВД:АД=ВС:АК (2√7):2√3=4:АК 8√3=2АК ·√7 АК=4√3:√7 АК является высотой треугольника АВД, проведенной к стороне ВД и в то же время расстоянием от А до ВД. S АВД=2√7·4√3·√7 =8√3 см²
Расстояние от А до ВД=АК=(4√3:)√7
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022