По рисунку. DE биссектриса угла ADF . По данным рисунка найдите углы треугольника ADE


Есть ответ
17.12.2022
390

Ответ


∠САВ + ∠КВА = 78° + 102° = 180°Эти углы - односторонние при пересечении прямых АЕ и BD секущей АВ, значит АЕ ║ BD.∠EAD = ∠BDA = 48° как накрест лежащие при пересечении параллельных прямых АЕ и BD секущей AD.∠ADB и ∠ADF cмежные, их сумма равна 180°, а биссектриса DE делит угол ADF пополам, следовательно:∠EDA = ∠EDF = (180° - 48°)/2 = 132/2 = 66°.Сумма углов треугольника 180°:∠AED = 180° - (∠EDA + ∠EAD) = 180° - (66° + 48°) = 180° - 114° = 66°


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
17.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.