Площади оснований правильной четырехугольной пирамиды равны 4 и 64 см2, а боковое ребро образует с плоскостью основания угол 45°. Найдите площадь диагонального сечения пирамиды.

Есть ответ
17.12.2022
226

Ответ


Площади оснований правильной четырехугольной пирамиды - если площади ДВЕ,значит пирамида усеченная.

S1 =  4 см2  -квадрат со стороной x=√S1 =√4 = 2 см -диагональю a=x√2=2√2 см

S2=64 см2  -квадрат со стороной y=√S2 =√64 = 8 см-диагональю b=y√2=8√2 см

Тогда площадь диагонального сечения пирамиды - это равнобедренная трапеция с острым углом 45° , верхнее основание  a = 2√2см ; нижнее основание  b = 8√2 см ; 

высота трапеции h = (b-a)/2 *tg45 = (8√2-2√2)/2*1=3√2 см

площадь диагонального сечения  S = (a+b) /2 *h= (8√2+2√2)/2*3√2=30 см2

ОТВЕТ 30 см2


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
17.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.