Разность между шестым и четвертым членами геометрической прогрессии равна 72, а между пятым и третьим равна 36. Найдите сумму восьми первых членов этой прогрессии.   765   684   823   129    

Есть ответ
17.12.2022
237

Ответ


Формула для суммы первых n членов геометрической прогрессии:

Sn = b₁·(q^n - 1)/(q - 1)

Для 8 членов геометрической прогрессии

S₈ = b₁·(q⁸ - 1)/(q - 1)

Формула для n-го члена геометрической прогрессии:

bn = b₁·q^(n-1)

n = 6    b₆ = b₁·q⁵

n = 4    b₄ = b₁·q³

n = 3    b₃ = b₁·q²

По условию:

b₆ -  b₄  = 72

b₃ -  b₁  = 9

или

b₁·q⁵ -  b₁·q³  = 72   

b₁·q² - b₁ = 9           

Преобразуем эти выражения

b₁·q³·(q² - 1) = 72     (1)

b₁·(q² - 1) = 9            (2)

Разделим (1) на (2) и получим

q³ = 8, откуда

q = 2

Из (2) найдём b₁

b₁ = 9/(q² - 1) = 9/(4 - 1) = 3

Подставим q = 2 и b₁ = 3 в S₈ = b₁·(q⁸ - 1)/(q - 1)

S₈ = 3·(2⁸ - 1)/(2 - 1) = 3·(256 - 1) = 765

Ответ: S₈ = 765

Вот так вот это надо решать


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
17.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.