На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD.

Есть ответ
12.12.2022
366

Ответ


Ответ: 30см²
Объяснение:
Высота ВН общая для треугольников  АВС, АВD и BDC.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты.
Ѕ(ABC):S(BCD)=AC:DC  
 Примем площадь ∆ BCD равной x
48:х=(6+10):10 => 480=16х ⇒ х=30 см²
Ответ: Ѕ(BCD)=30 см²
Тот же результат получим из отношения площадей треугольников АВС и BCD, выраженных по формуле S=a•h/2



Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
12.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.