две наклонные провёденные плоскости из одной точки образуют с ...
две наклонные провёденные плоскости из одной точки образуют с ней углы равные Ф.их проекции образуют угол В.найти угол между наклонными
Есть ответ
17.12.2022
282
Ответ
Точку из которой проведены наклонные обозначим К. Опусти из неё на плоскость перпендикуляр КС. Точки пересечения наклонных с плоскостью А и В. Получим отрезки наклонных АК, ВК и их проекции на плоскость АС и ВС. Треуольники АКС и ВКС равны как прямоугольные по острому углу и катету (Ф и КС). Тогда их строны АК и ВК равны. Обозначим их Х. Соединим А и В. Угол АСВ по условию равен В. Углы КАС и КВС равны Ф. АС=ВС=Х*cos Ф. По теореме косинусов АВ квадрат=(Х*cos Ф)квадрат +(Х*cos Ф)квадрат -2*Х*cos Ф*Х*cosФ*cosВ. Это в треугольнике АСВ. В треугольнике АКВ аналогично АВ квадрат=Х квадрат+Хквадрат-2*Х*Х* cos K. Приравниваем полученные выражения и получим cos K=1-(cos Ф)квадрат*(1-cos В). Где К искомый угол АКВ между наклонными
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022