сумма ста тридцати первых членов арифметической прогрессии равна ...
сумма ста тридцати первых членов арифметической прогрессии равна сумме ее первых восьмидесяти членов. найдите сумму первых двухсот десяти членов этой прогрессии.
Есть ответ
17.12.2022
84
Ответ
Рассмотрим общий случай
Sn=(2a1+d(n-1))*n/2
Sk=(2a1+d(k-1))*k/2
(2a1+(n-1)d)*n/2=(2a1+(k-1)d)*k/2
2a1(n-k)=k(k-1)d-n(n-1)d
a1=d(k^2-k-n^2+n)/2(n-k)
a1=d(-(n^2-k^2)+n-k)/2(n-k)
a1=d(-n-k+1)/2
a1=-d(n+k-1)/2
S_(n+k)=(2a1+d(n+k-1))(n+k)/2
d(n+k-1)=-2a1
S_(n+k)=(2a1-2a1))(n+k)/2=0
Т.е. мы доказали, что для любых n и k, если сумма n первых членов прогрессии равна сумме k первых членов прогрессии, сумма n+k первых членов прогрессии всегда равна 0.
Значит S210=0.
100a1=d(6400-80-16900+130)
100a1=-10450d
a1=-104,5d
S210=(2a1+d(210-1))*210/2=420a1+21945d=-(43890+21945)d=-21945d
S130=(-209d+129d)130/2=-80d*65=-5200d
S80=(-209d+79d)*40=-130d*40=
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022