Найдите три последовательных натуральных четных числа, если ...
Найдите три последовательных натуральных четных числа, если произведение первых двух из них на 72 меньше произведения двух последних
Есть ответ
17.12.2022
293
Ответ
три последовательных натуральных четных числа
2а, 2а+2, 2а+4 --- здесь уже а - любое натуральное число
2а*(2а+2) + 72 = (2а+2)*(2а+4)
4a^2 + 4a + 72 = 4a^2 + 8a + 4a + 8
8*(a + 1) = 72
a+1 = 9
a = 8
Эти числа 2*8 = 16, 18, 20
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022