В правильной шестиугольной призме ABCDEF A1B1C1D1E1F1 сторона основания равна 7, а высота равна 1. Найдите угол между прямой F1B1 и плоскостью AF1C1.

Есть ответ
17.12.2022
347

Ответ


угол F1A1B1=120

B1F1=2*cos30*A1F1 (достаточно провести высоту в A1B1F1 и сложить катеты образовавшихся прямоугольных треугольников)

 

Сечение проходит через точки F1ABC1.

 

Поэтому надо найти угол BF1B1

 

BF_{1}=sqrt{{BB_{1}}^2+B_{1}F_{1}}=sqrt{148}

 

он равен arcsin(frac{BB_{1}}{BF_{1}})=arcsin(frac{1}{sqrt{148}})


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
17.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.