Вычислить площядь фигуры ограниченной линиями 1) y =2,y=3x-x^2 2)y=-x^2+6x, y=0 3)y=-2sin x, y=sin x, 0 меньше или равен х меньше или равен п/3

Есть ответ
12.12.2022
173

Ответ


Вычислить площадь фигуры ограниченной линиями  
1) y =2,y=3x-x^2

Ищем пределы интегрирования:
3x-x²  = 2
х² -3х +2 = 0
х = 1  и 2 ( по т. Виета)
S =₁∫²(3x-x^2  -2) dx = (3x²/2 -x³/3 -2x)|₁² = 6 - 8/3 - 4 - 3/2 +1/3 +2 =
=2,5 -7/3 = 2,5 - 2 1/3 = 1/6
2)y=-x^2+6x, y=0

Ищем пределы интегрирования:
-х² +6х = 0
х =0 и х = 6
S = ₀∫⁶ (-x² + 6x)dx = (-x³/3 +3х²)|₀⁶ = 36
3)y=-2sin x, y=sin x, 0 ≤ х ≤ п/3
Ищем пределы интегрирования:
-2Sinx= Sinx
-3Sinx = 0
Sinx = 0
₀∫π/3 Sinxdx = -Cosx|₀π/3 = -Cosπ/3 + Сos0 = -1/2 + 1 = 1/2


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
12.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.