Составить уравнение касательной к графику функции f (х) в точке ...
Составить уравнение касательной к графику функции f (х) в точке х0, если f(x)=2x(х в кубе) , х0=-1
Есть ответ
12.12.2022
402
Ответ
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид у = f'(x0)(x - x0) + f(x0). Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1 f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x. Здесь ^ - знак возведения в степень, * - знак умножения. Найдем значение производной f'(x) в точке х = х0 = 1 f'(x0) = f'(1) = 3*1^2 - 20*1 = -17. Найдем значение функции f(x) в точке х = х0 = 1 f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8. Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1) y = -17(x - 1) - 8, y = -17x + 9. Ответ: у = -17х + 9.
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
12.12.2022