Число abc - простое число. Докажите, что b^2-4ac не явлется ...
Число abc - простое число. Докажите, что b^2-4ac не явлется квадратом целого числа.
Есть ответ
12.12.2022
381
Ответ
Пусть: 100*a+10*b+c=p (трехзначное простое число.(a,b,c -цифры)
Приметим сразу что тк p>2,то оно нечетно, а значит и c нечетно.
Тогда уравнение:
a*x^2+b*x+c=p (должно иметь корень 10, а другой корень будет рационален и иметь вид k/2a ,где k-целое число)
Предположим ,что b^2-4ac -полный квадрат, но это значит ,что уравнение:
a*x^2+bx+с=0 имеет рациональные корни вида x1=k1/2a и x2=k2/2a.(k1,k2-целые числа).
То есть справедливо разложение на множители: a*x^2+bx+c=a*(x-k1/2a)*(x-k2/2a)
Так же приметим ,что по теореме
Виета тк :a,b,c-цифры a>0;b>0;c>0
-b/a=x1+x20 .Тк произведение корней положительно, то каждый из них либо положительный либо отрицательный, но тк их сумма отрицательна, то каждый из корней отрицателен. Из этого следует, что -k1>0 ;-k2>0
Таким образом уравнение:
a*x^2+b*x+c=p
Может быть записано в виде:
a*(x-k1/2a)*(x-k2/2a)=p
Мы знаем, что 10-корень этого уравнения ,тогда:
a*(10-k1/2a)*(10-k2/2a)=p
(20a-k1)*(20a-k2)=4*a*p
Сразу приметим что a не равно 0,тк первая цифра не бывает нулем.
Пусть a-является нечетным:
а=1,3,5,7,9
Заметим, что все числа кроме 9 делятся только на себя или на 1. То есть либо простое ,либо равно 1.
Предположим, что a-нечетное и не равно 9. Тогда в любом случае хотя бы одно из слагаемых: 20a-k1 или 20a-k2 делится на a,то есть хотя бы одно из чисел k1 или k2 делится на a,тк 20a делится на a.
Тогда возьмем произвольно k1=a*r
r-целое число.
Тогда:
(20-r)*(20a-k2)=4*p
Предположим, что оба числа r и k2 кратны 2: r=2f1 ; k2=2f2
(10-f1)*(10*a-f2)=p
Тогда, тк -f1>0 и -f2>0
(10-f1)>10
(10*a-f2)>10
Но тк число p простое , то одно из выражений (10-f1) и (10*a-f2) равно p, а другое 1, но 11. Таким образом мы доказали пришли к противоречию :b^2-4ac не может быть полным квадратом, если число abc простое .
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
12.12.2022