При каких натуральных значениях n многочлен 1+x^2+x^4+...+x^2n разделится на многочлен 1+x+x^2+...+x^n

Есть ответ
20.12.2022
362

Ответ


При делении получится некоторый многочлен степени n:

 

frac{1+x^2+x^4+...+x^{2n}}{1+x+x^2+...+x^n}=a_0+a_1x+a_2x^2+...+a_nx^n

 

Избавимся от знаменателя:

 

(1+x^2+x^4+...+x^{2n})=(1+x+x^2+...+x^n)(a_0+a_1x+a_2x^2+...+a_nx^n)

 

Раскроем скобки в правой части:

 

=[/tex]

a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" title="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" title="a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" title="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" alt="a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" title="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" />

a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" alt="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" title="a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" alt="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" alt="a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" alt="a_0(1+x+x^2+...+x^n)+a_1x(1+x+x^2+...+x^n)+ a_2x^2(1+x+x^2+...+x^n)+...+ a_nx^n(1+x+x^2+...+x^n)=" />

[tex]a_0+(a_0+a_1)x+(a_0+a_1+a_2)x^2+...+(a_0+a_1+a_2+...+a_n)x^n+(a_1+a_2+...+a_n)x^{n+1}+(a_2+...+a_n)x^{n+2}+...+a_nx^{2n}" />

 

Коэффициенты при нечётных степенях должны быть равны нулю, а коэффициенты при чётных степенях должны быть равны 1:

a_0=1

a_0+a_1=0

a_0+a_1+a_2=1

...

a_0+a_1+a_2+...+a_n=1, при чётном n

a_0+a_1+a_2+...+a_n=0, при нечётном n

...

a_n=1

 

Отсюда получаем, что a_1=-1a_2=1a_3=-1a_4=1, и так далее, коэффициенты с нечётными индексами равны -1, а коэффициенты с чётными индексами равны 1.

 

Так как a_n=1, то очевидно, что n должно быть чётным, при этом при любом чётном n будут существовать корректные наборы коэффициентов a_i.

 

Ответ: при любом чётном n. 


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
20.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.