Высота равнобедренного треугольника, опущенная из его вершины на основание, равна 26. На каком расстоянии отстоит от вершины этого равнобедренного треугольника точка пересечения его биссектрис, если длина основания составляет 60% от длины боковой стороны треугольника?

Есть ответ
20.12.2022
215

Ответ


Пусть дан равнобедренный треугольник АВС, ВА=ВС, ВК=26

Пусть боковая сторона равна ВА=ВС=х, тогда основание равно АС=0.6х,

 

точка пересечения биссектрис делит высоту ВК (коорая также является биссектриссой) в отношении (ВА+ВС):АС=(х+х):(0.6х)=2:0.6=10:3, начиная от вершины

по свойству точки пересечения биссектрисс

 

поэтому расстояние от вершины В до точки пересечения биссектрис равно

10:(10+3)*26=20

ответ: 20


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
20.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.