Стороны треугольника АВС касаются шара.Найти радиус шара,если ...
Стороны треугольника АВС касаются шара.Найти радиус шара,если АВ=8 ,АС=12, Вс=10 и расстояние от центра шара О до плоскости треугольника АВС равно корень из 12.
Есть ответ
20.12.2022
421
Ответ
Пусть расстояние до плоскости тр-ка равно d=кор12, радиус вписанной в тр. АВС окр-ти (сечения сферы пл-тью АВС) равен r. Тогда радиус шара:
R = кор(d^2 + r^2). Найдем r.
Воспользуемся двумя формулами для площади тр-ка:
S = p*r и S = кор[p(p-a)(p-b)(p-c)], где р=(a+b+c)/2 - полупериметр.
р = (8+10+12)/2 = 15
Тогда площадь по формуле Герона:
S = кор(15(15-8)(15-10)(15-12)) = кор(15*7*5*3)= 15кор7
Тогда: 15кор7 = 15*r
Отсюда r = кор7
Тогда радиус шара:
R = кор(12 + 7) = кор19.
Ответ: корень из 19
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
20.12.2022