вписанная в прямоугольный треугольник окружность делит в точке касания один из катетов на отрезки 6 и 10 считая от вершины прямого угла найдите периметр треугольника

Есть ответ
18.12.2022
196

Ответ


Нарисуем прямоугольный треугольник и окружность в нем.

Не обязательно точно, но чтобы иметь представление, о чем речь. 

Вспомним свойство касательных, проведенных из точки к окружности. 

От прямого угла откладываем 6 см в обе стороны на двух катетах. 

Далее от одного из острых углов тоже по обе стороны от вершины откладываем 10см.

Отрезки касательных у третьей вершины обозначим х.

У нас есть

катет 6+10=16 

второй катет 6+х

гипотенуза 10+х

Составим уравнение гипотенузы по теореме Пифагора. 

(10+х²)=(6+х)²+16²

100+20х+х²=36+12х+х²+256100+20х =36+12х +25620х-12х=192х=24Периметр равен 2(10+6+24)=80см

 


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.