Сторона треугольника равна 20, а медианы, проведенные к другим ...
Сторона треугольника равна 20, а медианы, проведенные к другим сторонам, 18 и 24. Найти площадь треугольника. Помогите пожалуйста! Буду вам очень благодарна!
Есть ответ
18.12.2022
409
Ответ
Обозначим треугольник АВС, АС=20-основание. Проведём медианы АК=18 и СД=24. Они пересекаются в точке О. Которая делит их в отношении 2/1 считая от вершины. Тогда СО=2/3ДС=2/3*24=16. AO=2/3AK=2/3*18=12. По формуле Герона найдём площадь треугольника АОС. р=(а+в+с)/2=(12+16+20)/2=24. Sаос=корень из((р*(р-а)(р-в)(р-с))=корень из (24*12*8*4)=96. Три медианы делят треугольник на шесть равновеликих. Если провести медиану из вершины В, то треугольник АОВ будет разделён на два треугольника каждый из которых составляет шестую часть от АВС. Тогда искомая площадь Sавс=3*Saoc=3*96=288.
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
18.12.2022