Четырехугольник ABCD задан координатами своих вершин A(-1,1) B(3,3) C(2,-2) D(-2,-1). Найдите синус угла между его диагоналями.

Есть ответ
18.12.2022
283

Ответ


(AC)=(3;-3)

(BD)=(-5;-4)

|AC|=3sqrt(2)

|BD|=sqrt(41)

(AC)(BD)=(-15+12)=-3

cosx=-3/3sqrt(2)*sqrt(41)=-sqrt(82)/82

sinx=sqrt(1-82/82^2)=-9sqrt(82)/82

или так

[(AC)(BD)]=-27

sinx=-27/3sqrt(2)sqrt(41)=-9sqrt(82)/82

 


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.