Около равнобедренного треугольника MPK c основанием MK, равным 48, описана окружность с центром О. Радиус окружности равен 25. Найдите расстояние от точки О до боковой стороны треугольника

Есть ответ
18.12.2022
335

Ответ


В окружности с радиусом 25 расстояние до хорды длины 48 равна 7 (половина хорды, расстояние до хорды и радиус образуют прямоугольный треугольник, в данном случае Пифагоров 7,24,25). Поэтому высота равнобедренного треугольника, заданного в задаче, равна 7 + 25 = 32 (возможен вариант 25 - 7 = 18, то есть возможны два решения). Боковая сторона равна 40 (40^2 = 24^2 + 32^2, проверьте :)) это Пифагорова тройка, кратная 3,4,5), а расстояние до неё вычисляется уже упомянутым способом, обозначим его d,

d^2 = 25^2 - (40/2)^2 = 15^2; d = 15 (и тут 3,4,5:)).

Во втором варианте высота 18, половина основания 24, поэтому боковая сторона 30 (опять 3,4,5!). Растояние до хорды длины 30 вычисляется так

d^2 = 25^2 - 15^2 = 20^2; d= 20. (и здесь 3,4,5, уже четвертый раз, а всего 5 раз встречается Пифагорова тройка :)))

Таким образом, в задаче есть два решения, 15 и 20. 


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.