Из пунктов А и В, расстояние между которыми 500 м, навстречу друг другу по прямой дороге идут два брата с одинаковой скоростью 5 км/ч. От одного брата к другому бежит их собака, которая, добежав, немедленно поворачивает и мчится к первому брату. Это повторяется, пока братья не встретятся. Определите перемещение собаки и пройденный ею путь, если скорость движения собаки 20 км/ч.

Есть ответ
12.12.2022
502

Ответ


Дано:
l = 500 м = 0,5 км
v_{1} = v_{2} = 5 км/ч
v_{3} = 20 км/ч
Найти: s_{3}-?  l_{3}-?
Решение. 1) Выберем систему отсчета "Брат 1". Согласно закону сложения скоростей для Брата 2 скорость составляет v_{21} = v_{1} + v_{2}. А выглядит это так: пока Брат 1 находится на месте, Брат 2 самостоятельно преодолевает дистанцию l со скоростью 2v_{1}, значит, время к моменту встречи равен
t = dfrac{l}{v_{1} + v_{2}}
Вернемся в систему отсчета "пункт А". Брат 1 за время t до места встречи пройдет расстояние, которое будет равняться перемещению собаки s_{3} = v_{1}t = v_{1} cdot dfrac{l}{v_{1} + v_{2}}
Бегая без остановок на протяжении времени t, собака преодолевает путь l_{3} = v_{3}t = v_{3} cdot dfrac{l}{v_{1} + v_{2}}
Определим значения искомых величин:
s_{3} = 5 cdot dfrac{500}{5 + 5} = 250 м
l_{3} = 20 cdot dfrac{500}{5 + 5} = 1000 м
Ответ: 250 м; 1 км


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
12.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.