Доказать, что F(x) = х/2 - 3/х является первообразной для f(Х) = 1/2 + 3/x^2 на промежутке (минус бесконечность; 0)

Есть ответ
18.12.2022
164

Ответ


Нужно доказать, что ∫f(x)dx + C = F(x)

Возьмём интеграл:

∫f(x)dx + C = ∫( 1/2 + 3/x^2)dx + C = х/2 + 3·(-1)·х⁻¹ + С = х/2 - 3/х + С

Действительно, F(x) = х/2 - 3/х является одной из первообразных, но не только на интервале х∈(-∞; 0), но и на интервале (0; +∞)


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.