Помогите, пожалуйста, решить задание: Найдите общее решение и ...
Помогите, пожалуйста, решить задание:
Найдите общее решение и частное, удовлетворяющее начальным условиям решение дифференциального уравнения первого порядка:
1) y^,=y^3*x, у = 1 при х = 1;
2) y^,-(3*y)/x=x^3*e^x, y0=e, x0=1
Есть ответ
18.12.2022
278
Ответ
1) y' = y³x

Проинтегрируем обе части:

- общее решение дифф. уравнения.
Из начального условия y(1)=1 найдем частное решение:
Подставив в общее решение, найдем С
-1/2 = 1/2 + С ⇔ С = -1/4
- частное решение дифф. уравнения.
2) 
Для начала найдем общее решение однородного дифф. уравнения



Проинтегрировав, получим:
ln|y|=3ln|x| + lnC
y = Cx³ - общее решение однородного дифф. уравнения
y = C(x)x³ подставим в наше дифф. уравнение
x^3 + 3x^2C(x) - 3C(x)x^2 = x^3e^x)
=e^x)
 = int{e^x}, dx = e^x + C_1)
- общее решение дифф. уравнения
Из начального условия y(1) = e найдем C₁
C₁ = 0
- частное решение дифф. уравнения
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
18.12.2022