боковое ребро правильной треугольной пирамиды равно а,угол ...
боковое ребро правильной треугольной пирамиды равно а,угол между боковыми гранями равен 2φ.найдите длину стороны основания.
Есть ответ
18.12.2022
481
Ответ
Пусть пирамида имеет вершину S и в основании треугольник АВС.
Для простоты обозначим неизвестную сторону основания х.
Из точек С и В проведём к ребру АS перпендикуляры. В силу того, что грани АSC и АSВ одинаковы, эти перпендикуляры придут в одну точку К на ребре АS. Эти перпендикуляры равны: СК = ВК. Следовательно, треугольник СКВ - равнобедренный.
Мерой двугранного угла, образованного двумя боковыми гранями АSC и АSВ является линейный угол СКВ. Итак, уг. СКВ = 2φ
Из вершины К тр-ка СКВ опустим высоту КД(она же медиана, она же биссектриса) на сторону ВС.
В прямоугольном тр-ке СКД уг.СКД = φ. Половина СД стороны основания ВС равна = 0,5х или
0,5х = СK·sinφ.
В тр-ке АSC, являющемся боковой гранью, высоту СК можно найти из площади
S = 1/2 CK· AS
или поскольку ребро AS = a, то
S = 1/2 CK· а, откуда
СК = 2S/а.
Для другой боковой грани - тр-ка BSC, равного тр-ку АSC та же площадь
S = 1/2 SД· ВС или
S = 0,5 SД· х.
Из тр-ка СSД найдём SД
SД² = SC² - CД² или
SД² =а² - (0,5х)²
SД =√(а² - (0,5х)²)
Теперь пошли обратно по "жирной" цепочке
Подставим SД в S = 1/2 SД· х и получим
S = 0,5 √(а² - (0,5х)²)· х
S подставим в СК = 2S/а. Получим
СК = (х/а)·√(а² - (0,5х)²)
Наконец, подставим СК в 0,5х = СK·sinφ.
0,5х = [√(а² - (0,5х)²)· х/а]·sinφ.
Преобразуем и найдём х
х/(2sinφ) = (х/а)·√(а² - (0,5х)²)
1/(2sinφ) = (1/а)·√(а² - (0,5х)²)
а = 2sinφ·√(а² - (0,5х)²)
а² = 4sin²φ·(а² - (0,5х)²
а² = sin²φ·(4а² - х²)
а² - 4а² ·sin²φ·= - х²·sin²φ
а²(4sin²φ - 1) = х²·sin²φ
х = [а·√(4sin²φ - 1)]/sinφ - это и есть длина стороны основания
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
18.12.2022