Найти все корни уравнения  sin x/2 = √3/2 , удовлетворяющие неравенству: log (х-4π) по основанию π <1.

Есть ответ
18.12.2022
281

Ответ


1) Сначала решим уравнение.  x/2 = (-1)^n * (pi/3) + pi n.

x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z

Если n - четное, т.е. n=2k, то x/2 = pi/3 + 2pi k,  x = 2pi/3 + 4pi k.  Если n - нечетное, т.е. n = 2k + 1, то x/2 = -pi/3  +(2k+1) pi = -pi/3 +2pi k + pi = 2pi/3 + 2pi k,  

x = 4pi/3 + 4pi k

2) Решим неравенство. Так основание pi>1, то x - 4pi < pi, x < 5pi. ОДЗ неравенства:

x - 4pi > 0,  x>4pi. Совмещаем выделенные неравенства: 4pi < x < 5pi

3) Отбор корней.  а)  4pi


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.