Нужно решить три уравнения, не понимаю их.
1. ax^2 + (n+1)x + 1 = 0
2. x^2 + nx + 15 = 0
У обоих задание: При каком значении n уравнение имеет решение.
3. x^2 + x - 5/x + 3x = 0 __________ ____________ x x^2 + x - 5

Есть ответ
18.12.2022
169

Ответ


1) 1 случай a=0, то уравнение примет вид: (n+1)x + 1=0 

x=-1/(n+1), отсюда видно, что n-любое действительное число, кроме n= -1( ибо в знаменателе будет ноль)

2) 2 случай a неравно 0

тогда имеем: ax^2+(n+1)x +1=0, чтобы уравнение имело имело решения дистриминант должен быть больше или равнятся нулю.

D=(n+1)^2 -4a>или равно нулю

(n+1)^2> или = 4а

отсюда видно, что  число в квадрате всегда будет больше или равно нулю, если а будет больше или равно нулю

Значит n-любое, если а>или=0

ответ: 1) n- любое , кроме n=-1. 2) n- любое, если а> или=0( вот тут совнемаюсь немного)


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.