В прямоугольном треугольнике АВС (угол С=90 градусов) катет ВС равен 8, радиус вписанной окружности равен 2. Найти расстояние между центром вписанной и центром описанной окружностей.

Есть ответ
18.12.2022
258

Ответ


Обозначим треугольник АВС(смотри рисунок). Проведём радиусы ОМ, ОN,ОР. Обозначим точку К-центр описанной окружности, в прямоугольном треугольнике он лежит на середине гипотенузы. Далее NВ=ВС-NC=6. Когда найдём АС-становится ясно, что треугольник -"египетский"(соотношение сторон 3:4:5). Отсюда АВ=10.В дальнейшем исходим из равенства треугольников ONB и OPB (у них гипотенуза ОВ -общая и катеты ON и OP равны как радиусы). Затем по теореме Пифагора. Ответ ОК=корень из 5.


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.