ешить квадратичные неравенства. а) (2х-3)(х+1)> x²+17 ...
ешить квадратичные неравенства.
а) (2х-3)(х+1)> x²+17
б)11-х≥(х+1)^2
в) -3x²≤9х
Есть ответ
18.12.2022
451
Ответ
а) (2х-3)(х+1)>х(кв)+17
2х(кв)-3х+2х-3>х(кв) +17
2х(кв)-х(кв)-3х+2х-3-17>0
х(кв)-х-20>0
х(кв)-х-20=0 D=1+80=81
х1=(1+9)/2=5
х2=(1-9)/2=-4
Теперь подставим в 4 строчку вместо х ноль ( самое удобное число между 5 и -4), чтобы найти, на каком промежутке неравенство становится верным:
0(кв)-0-20 не больше нуля, значит неравенсво верное за пределами чисел -4 и 5, а не между ними.
Ответ: (от - бесконечности; -4) объединяется (5; до +бесконечности)
Остальные аналогично (расписывать не буду, слишком много). Доводишь до неравенства с нулём, ищешь удобное число между двумя корнями, проверяешь и находишь промежутки. Если что-то непонятно спрашивай))
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
18.12.2022