Помогите пожалуйста, хотя бы одну задачку))...они легкие для того кто хоть немного понимает геометрию...не то, что я..дуб..дубом((
№ 1
Точка S принадлежит ребру AB  прямой призмы ABCA1B1C1. Длина высоты пирамиды SA1B1C1  равно длине отрезка: а)AA1  б) SA1  с) SB1
№ 2
Длина ребра куба ABCDA1B1C1D1 равна 8 дм. Точка О – точка пересечения диагоналей в основание ABCD. Вычислите площадь диагонального сечения пирамиды OA1B1C1D1
№ 3
Дина ребра шестиугольной призмы равны. Вычислите длину большей диагонали, если известно площадь боковой призмы 96 см2.

Есть ответ
18.12.2022
273

Ответ


1)
Т.к. призма прямая, её грани перпендикулярны основаниям.
Грань SA1B1 пирамиды лежит в плоскости АВВ1А1, высота SH перпендикулярна основанию А1В1С1 и параллельна боковому ребру призмы, следовательно, её длина равна длине ребра АА1.
2)
Пусть АВСD - верхнее основание куба, а нижнее A1B1C1D1.
Диагонали основания пирамиды OA1B1C1D1 совпадают с диагоналями квадрата А1В1С1D1, высота ОН равна расстоянию между параллельными основаниями куба, т.е. длине его ребер - 8 дм.
Диагональное сечение пирамиды - треугольник А1ОС1. Основание А1С1 - диагональ квадрата со стороной А1В1=8. А1С1=8√2 (как диагональ квадрата).
S(A1OC1)=OH•A1C1:2=8•8√2*2=32√2 дм²
3)
В этой задаче допущена неточность. Длины ребер правильной шестиугольной призмы равны.
В основании этой призмы правильный шестиугольник, а все 6 граней - квадраты. Площадь каждого 96:6=16 см²
Тогда ребро призмы √16=4 см.
Правильный шестиугольник можно разделить на 6 правильных треугольников, и длина бóльшей его диагонали равна длине 2-х ребер.
На рисунке приложения АD и А1D1 - бóльшие диагонали оснований, а А1D - бóльшая диагональ призмы.
По т.Пифагора
А1D=√(AA1²+AD²)=√(4²+8²)=4√5


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.