вычислить площадь фигуры, ограниченной линиями: у=1-х^(3), у=0, х=-1

Есть ответ
18.12.2022
421

Ответ


Вычислить площадь фигуры, ограниченной линиями y=e^x, y=e^-x, x=1 поскольку обе кривые пересекаются в точке х=0 у=1 и не обращаются в ноль то площадь фигуры, ограниченной линиями y=e^x, y=e^-x, x=1 равна площади фигуры, ограниченной линиями y=e^x у=0 x=0 x=1 минус площадь фигуры, ограниченной линиями y=e^-x у=0 x=0 x=1 первая это интеграл от нуля до 1 от e^x вторая это интеграл от нуля до 1 от e^-x интеграл от e^-x = - e^-x остается подставить значения и найти каждый интеграл а затем из первого вычесть второй



Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.