докажите что при любом натуральном n выражение 5n^3-5n делится на 30

Есть ответ
18.12.2022
225

Ответ


достаточно доказать что n^3-n делится на 6

n(n^2-1) достаточно доказать что это число делится на 3.

при n=2 имеем 2*(4-1)=6 делится на 3.

пусть при n=m наше предположение верно, покажем что оно имеет место при

n=m+1

(m+1)^3-m-1=m^3+1+3m^2+3m-m-1=(m^3-m)+3(m^2+m) ясно что выражение

делится на 3.

методом индукции мы доказали делимость на 3.


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.