даны геометрическая и арифметическая прогрессии. в арифметической прогрессии первый член равен 3, разность равна 3. в геометрической прогрессии первый член равен 5, знаменатель равен корень из 2. выяснить, что больше: сумма первых семи членов арифметической прогрессии или сумма первых шести членов геометрической прогрессии.

Есть ответ
18.12.2022
111

Ответ


сумма первых семи членов арифметической прогресси равна 3+6+9+12+15+18+21=84,  а сумма первых шести членов геометрической прогрессии  равна 5+5*(кв.корень2) +5*2+10*(кв.корень2)+10*2+20*(кв.корень2)=35+35*(кв.корень2). так как кв. корень 2 больше 1,4, то сумма 35 + 35*(кв. корень2) больше, чем 35+35*1,4=84. следовательно сумма первых шести членов геометрической прогрессиии больше, чем сумма семи членов арифметической прогрессии


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.