докажите, что функция y=(|3x|-3x)(|x|+x) является и четной, и нечетнойну оооочень надо. распишите пожалуйста все поподробнее
 

Есть ответ
18.12.2022
363

Ответ


 y=(|3x|-3x)(|x|+x) 

f(x)=(|3x|-3x)(|x|+x) 

f(-x)=(|-3x|-3(-x))(|-x|-x)=(|3x|+3x)(|x|-x)

-f(x)=-(|3x|-3x)(|x|+x) , т.к. f(x)≠f(-x) и f(-x)≠-f(x) то

 y=(|3x|-3x)(|x|+x) - функция общего вида


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.