Помогите решить систему. Вот они: x^2-xy+y^2=63, x+y=-3 Еще одна. 2x+y=3, x^2+y^2-6y=36

Есть ответ
18.12.2022
285

Ответ


x^2-xy+y^2=63x+y=-3x^2-xy+y^2=63x=(-3)-yx^2-xy+y^2=63x=-3-y(-y-3)^2-(-y-3)*y+y^=63x=-y-3

 

Случай 1:

 

y=-6

x=-y-3y=-6y=-(-6)-3

 

y=-6

x=3

 

Случай 2:

y=3

x=-y-3

 

y=3

x=-3-3

 

y=3

x=-6

 

Окончательный ответ:

x=3

y=-6

 

x=-6

y=3Вторая система:

2x+y=3

x^2+y^2-6y=36

 

y=3-2x

x^2+y^2-6y=36

 

y=-2x+3

x^2+(-2x+3)^2-6(-2x+3)=36

 

Случай 1:y=-2x+3

x= -3

 

y=-2(-3)+3

x=-3

 

y=9

x=-3

 

Случай 2:

y=-2x+3

x=3

 

y=-2*3+3

x=3

 

y=-3

x=3

 

Окончательный ответ:

x=-3

y=9

 

x=3

y=-3


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.