18. В параллелограмме угол между высотами, проведёнными из вершины тупого угла, равен 30°. Найдите площадь этого параллелограмма, если высоты равны 6 см и 16 см.

Есть ответ
12.12.2022
501

Ответ


В параллелограмме ABCD DM и BN высоты, проведенные из тупого угла ∠B, угол между ними ∠MBN = 30°.
∠MBC = 90°; ∠MBN = 30°, тогда ∠NBC= 90° - 30° = 60°;
В прямоугольном ΔNBC ∠C = 180° - 90° - 60° = 30°. Катет, лежащий против угла 30° равен половине гипотенузы.
BN = 1/2 BC ⇒ BC = 2*BN = 2 * 16 = 32 см.
Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
S = AD*BM = 6 см * 32 см = 192 см².
Площадь параллелограмма S = 192 см².


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
12.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.