докажите, что функция является периодической f(x)= sinx+cosx f(x)=3+sin^2x

Есть ответ
18.12.2022
166

Ответ


учитывая, что функции sin x и cos x определены на всей области действительных чисел и периодичны с периодом 2pi

так как f(x)= sinx+cosx тоже определена на области всех действильных чисел и

f(x+2pi)=sin (x+2pi)+cos (x+2pi)=sin x + cos x=f(x), то

f(x)= sinx+cosx периодична с периодом 2pi

 

 

так как f(x)=3+sin^2x тоже определена на области всех действильных чисел и

f(x+2pi)=3+sin^2 (x+2pi)=3+sin^2 x=f(x)

(прим. эта функция имеет даже меньший положительный период равный pi)

доказано

 


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
18.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.