боковое ребро правильной треугольной пирамиды равно 13,а одна из ...
боковое ребро правильной треугольной пирамиды равно 13,а одна из высот оснований равна 7,5.найдите высоту пирамиды.
Есть ответ
18.12.2022
196
Ответ
Начнем с того, что в правильном треугольнике, который лежит в основании этой пирамиды, все высоты имеют одинаковую длину.
Центр правильной пирамиды с равными ребрами находится в точке пересечения медиан ( они же и высоты). Следовательно, АО=2/3 от 7,5=5, так как медианы треугольника делятся точкой пересечения в отношении 2:1, считая от вершины.
В треугольнике АОР известны гипотенуза АР (13) и один из катетов АО (5).
По теореме Пифагора находим высоту РО пирамиды:
РО=√(169-25)=12
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
18.12.2022