Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии- одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью-1/2 очка, за проигрыш - 0.)

Есть ответ
12.12.2022
453

Ответ


Пошаговое объяснение:
Пусть x - количество девушек, тогда 7x - количество юношей, всего 8x участников.

Пусть y - очки, набранные девушками, 3y - очки, набранные юношами, всего 4y очков.

Для справки: если число игроков в круговом турнире n, то число игр рассчитывается по формуле n(n-1)/2.

В нашем случае это значение нужно умножить на 2, так как каждый с каждым играют по 2 раза.

То есть всего игр будет сыграно 8x(8x-1).

Так как после каждой игры, независимо от того кто выиграл, в общую копилку прибавляется 1 очко, общее количество очков за турнир будет равно количеству игр, то есть 4y = 8x(8x-1). Откуда y=2x(8x-1) {уравнение 1}.

Казалось бы, решений бесконечное множество, но помним, что девушки играют между собой. Каждая девушка может набрать максимум 2(8x-1) очков. Всего девушек x, поэтому вместе они могут набрать максимум 2x(8x-1) - x(x-1)/2, где x(x-1) - количество игр между девушками. То есть появляется условие y


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
12.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.