Решить задания, обведенные кружочком, если есть время, то еще и 10,11,12. Смотрите во вложения :) Чтобы проверить правильность решенного на второй картинке есть ответы. Мне нужно полное решение заданий, обведенных кружочком.




Есть ответ
17.12.2022
293

Ответ


5. в) Здесь всё уже разбито на множители, поэтому осталось только нанести нули и не имеющие смысла выражения на прямую и верно поставить знаки. рисунок первого решения сейчас приложу. Отсюда выписываем те интервалы, где значение выражения меньше или равны 0. Это (-∞;-2] ∨ {64}

 

6.a) У нас выражение - дробь.  А дробь имеет смысл, если его знаменатель не равен 0. С другой стороны - в знаменателе у нас стоит квадратный корень, который имеет смысл, если его подкоренное выражение неотрицательно. Отсюда естественно вытекает, что подкоренное выражение должно быть только больше нуля. составим и решим неравенство:

(4 - x)(x + 6) >0

Вынесем минус за скобки в левой части и домножим всё на -1:

-(x - 4)(x + 6) > 0

(x - 4)(x + 6) 0

(x - 2)(x + 1) > 0

Решая методом интервалов, получим:

(-∞;-1) ∨ (2;+∞)

Решаем второе неравенство:

10x + 25 > 0

10x > -25

x > -2.5

Теперь приведу рисунок, на котором найду окончательное решение всей системы. на рисунке решения каждого неравенства показаны штриховкой, решением системы соответственно будут участки, где штриховки совпадают, я их и нашёл. Это:

(-2.5;-1) ∨ (2;+∞) - решение системы.

 

10)а) Следует помнить, что решение неравенств высших порядков(степени, выше первой) должно осуществляться с помощью метода интервалов. Для этого, условие номер 1 - разложить исходное выражение на множители. Этим и займёмся. Разложим на множители левую часть неравенства:

 

16x³ - 32x² - x + 2 = (16x³ - 32x²) - (x - 2) = 16x²(x - 2) - (x-2) = (x-2)(16x² - 1) = (x-2)(4x-1)(4x+1)

Неравенство примет вид:

(x-2)(4x - 1)(4x+1)


Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
17.12.2022
Этот сайт использует cookies (Политика Cookies). Вы можете указать условия хранения и доступ к cookies в своем браузере.