Помогите пожалуйста! Очень прошу! Трапеция с основаниями 2 и ...
Помогите пожалуйста! Очень прошу! Трапеция с основаниями 2 и 8 разрезана тремя отрезками, которые || основаниям, на четыре подобных между собой трапеции. Найти длины этих трёх отрезков. б) Что больше: площадь самой большой из этих четырёх трапеций или сумма площадей остальных трёх?
Заметьте пожалуйста, что отрезки не являются средними линиями и тд и тп.
Есть ответ
17.12.2022
126
Ответ
Обязательно смотрим рисунок.
И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной:х²=2*8=16х=√16=4
Второй отрезок между первым и основанием исходной трапеции у²=4*8=32у =√32=4√2
Третий отрезок - идет под меньшим основанием z²=2*4=8z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2Площадь второй по величине относится к нижней -большей- как 1:2=1/2Третьей ко второй 1/2:2=1/4и последней 1/8сложим площади 1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1 Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022