В треугольнике с вершинами в точках A (4; 5; 0), B (2; 3; 0) и C ...
В треугольнике с вершинами в точках A (4; 5; 0), B (2; 3; 0) и C (2; 5; 2) найдите в градусах сумму углов при основании AC.
Есть ответ
17.12.2022
505
Ответ
Решаю векторами.
Компоненты векторов
{AB}[/tex],
overrightarrow{AC}" title="overrightarrow{AC}" alt="overrightarrow{AC}" /> и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" title="overrightarrow{AB}" title="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" title="overrightarrow{AB}" alt="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" title="overrightarrow{AB}" />,
overrightarrow{AC}" title="overrightarrow{AC}" alt="overrightarrow{AC}" /> и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" alt="overrightarrow{AB}" title="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" alt="overrightarrow{AB}" alt="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" alt="overrightarrow{AB}" />,
overrightarrow{AC}" title="overrightarrow{AC}" alt="overrightarrow{AC}" /> и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" />
![overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 } overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 }](https://tex.z-dn.net/?f=overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 })
![overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 } overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 }](https://tex.z-dn.net/?f=overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 })
Нормы (модули, величины, длины) этих векторов:
" title="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" alt="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" />
left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" title="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" alt="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" />
left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" title="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" alt="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" />
Угол между векторами
{AC}" title="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" />
![overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 } overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 }](https://tex.z-dn.net/?f=overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 })
![overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 } overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 }](https://tex.z-dn.net/?f=overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 })
Нормы (модули, величины, длины) этих векторов:
" title="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" alt="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" />
left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" title="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" alt="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" />
left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" title="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" alt="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" />
Угол между векторами
{AC}" alt="overrightarrow{AB} = textbf{r}_B - textbf{r}_A = { -2; -2; 0 }" />
![overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 } overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 }](https://tex.z-dn.net/?f=overrightarrow{AC} = textbf{r}_C - textbf{r}_A = { -2; 0; 2 })
![overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 } overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 }](https://tex.z-dn.net/?f=overrightarrow{CB} = textbf{r}_B - textbf{r}_C = { 0; -2; -2 })
Нормы (модули, величины, длины) этих векторов:
" title="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" alt="left|overrightarrow{AC}right| = sqrt{(-2)^2+0^2+2^2} = sqrt{8}" />
left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" title="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" alt="left|overrightarrow{AB}right| = sqrt{(-2)^2+(-2)^2+0^2} = sqrt{8}" />
left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" title="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" alt="left|overrightarrow{CB}right| = sqrt{0^2+(-2)^2+(-2)^2} = sqrt{8}" />
Угол между векторами
{AC}" /> и
overrightarrow{AB}" title="overrightarrow{AB}" alt="overrightarrow{AB}" />:
cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" title="overrightarrow{AC}" title="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" title="overrightarrow{AC}" alt="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" title="overrightarrow{AC}" /> и
overrightarrow{AB}" title="overrightarrow{AB}" alt="overrightarrow{AB}" />:
cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" alt="overrightarrow{AC}" title="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" alt="overrightarrow{AC}" alt="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" alt="overrightarrow{AC}" /> и
overrightarrow{AB}" title="overrightarrow{AB}" alt="overrightarrow{AB}" />:
cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" />
Скалярное произведение
![overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4 overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4](https://tex.z-dn.net/?f=overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4)
Имеем
![cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2} cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2}](https://tex.z-dn.net/?f=cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2})
В градусах:
[tex]arccos : frac{1}{2} = 60^{circ}" title="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" />
Скалярное произведение
![overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4 overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4](https://tex.z-dn.net/?f=overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4)
Имеем
![cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2} cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2}](https://tex.z-dn.net/?f=cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2})
В градусах:
[tex]arccos : frac{1}{2} = 60^{circ}" alt="cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{overrightarrow{AC} cdot overrightarrow{AB}}{left|overrightarrow{AC}right| left|overrightarrow{AB}right|}" />
Скалярное произведение
![overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4 overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4](https://tex.z-dn.net/?f=overrightarrow{AC} cdot overrightarrow{AB} = (-2) cdot (-2) + 0 cdot (-2) + 2 cdot 0 = 4)
Имеем
![cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2} cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2}](https://tex.z-dn.net/?f=cos angle left(overrightarrow{AC}, overrightarrow{AB}right) = frac{4}{sqrt{8} cdot sqrt{8}} = frac{4}{8} = frac{1}{2})
В градусах:
[tex]arccos : frac{1}{2} = 60^{circ}" />
Угол между векторами
{AC}[/tex] и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" title="overrightarrow{AC}" title="cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" title="overrightarrow{AC}" alt="cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" title="overrightarrow{AC}" /> и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" alt="overrightarrow{AC}" title="cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" alt="overrightarrow{AC}" alt="cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" alt="overrightarrow{AC}" /> и
overrightarrow{CB}" title="overrightarrow{CB}" alt="overrightarrow{CB}" />:
[tex]cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{overrightarrow{AC} cdot overrightarrow{CB}}{left|overrightarrow{AC}right| left|overrightarrow{CB}right|}" />
Скалярное произведение
![overrightarrow{AC} cdot overrightarrow{CB} = (-2) cdot 0 + 0 cdot (-2) + 2 cdot (-2) = -4 overrightarrow{AC} cdot overrightarrow{CB} = (-2) cdot 0 + 0 cdot (-2) + 2 cdot (-2) = -4](https://tex.z-dn.net/?f=overrightarrow{AC} cdot overrightarrow{CB} = (-2) cdot 0 + 0 cdot (-2) + 2 cdot (-2) = -4)
Имеем
![cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{-4}{sqrt{8} cdot sqrt{8}} = frac{-4}{8} = -frac{1}{2} cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{-4}{sqrt{8} cdot sqrt{8}} = frac{-4}{8} = -frac{1}{2}](https://tex.z-dn.net/?f=cos angle left(overrightarrow{AC}, overrightarrow{CB}right) = frac{-4}{sqrt{8} cdot sqrt{8}} = frac{-4}{8} = -frac{1}{2})
В градусах:
![arccos left(-frac{1}{2}right) = 120^{circ} arccos left(-frac{1}{2}right) = 120^{circ}](https://tex.z-dn.net/?f=arccos left(-frac{1}{2}right) = 120^{circ})
Нас интересует угол
![angle left(overrightarrow{CA}, overrightarrow{CB}right) = 180^{circ} - angle left(overrightarrow{AC}, overrightarrow{CB}right) = 180^{circ} - 120^{circ} = 60^{circ} angle left(overrightarrow{CA}, overrightarrow{CB}right) = 180^{circ} - angle left(overrightarrow{AC}, overrightarrow{CB}right) = 180^{circ} - 120^{circ} = 60^{circ}](https://tex.z-dn.net/?f=angle left(overrightarrow{CA}, overrightarrow{CB}right) = 180^{circ} - angle left(overrightarrow{AC}, overrightarrow{CB}right) = 180^{circ} - 120^{circ} = 60^{circ})
Сумма углов будет
+ 60^{circ} = 120^{circ}" title="60^{circ} + 60^{circ} = 120^{circ}" alt="60^{circ} + 60^{circ} = 120^{circ}" />
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022