В основании треугольной пирамиды лежит прямоугольный треугольник ...
В основании треугольной пирамиды лежит прямоугольный треугольник с прямым углом С и катетами 3 и 4. Высота пирамиды SC равна 8. Плоскость, проходящая через ребро SC, дает в пересечении с пирамидой треугольник SDC наименьшей площади. Найдите площадь этого сечения.
Есть ответ
17.12.2022
565
Ответ
На этой странице у меня цифры 3 в значении катета по какой-то причине не видно в условии задачи, но скопировала ее часть и видно это: "треугольник с прямым углом С и катетами 3 и 4"
-------------------------------В рисунке и задаче я вместо SDC употребила SМC, но это на решение не влияет. Решение:Сечение, дающее треугольник SМC наименьшей площади - это сечение, в основании которого лежит высота треугольника АВС, т.к. остальные отрезки из С к АВ длиннее перпендикуляра как наклонные. Площадь этого сечения ( прямоугольного треугольника SCМ) найдем половиной произведения катетов:
S сечения= СМ·SМ:2СМ - высота треугольника с катетами 3 и 4.
Этот треугольник АВС - египетский, и без вычислений можно вспомнить, что его
гипотенуза равна 5. Применив теорему Пифагора получим ту же самую величину. Найдем высоту этого треугольника из двух форул:СМ²=АС²-АМ² СМ²=СВ²- МВ²
Приравняем эти значения высоты:
АС²-АМ²=СВ²- МВ² Пусть АМ=х, тогда МВ=5-х
16-х²=9 - (5-х)²
16-х²=9 - 25 +10х-х²16 =9 - 25 +10х 10х=32х=3,25-х=1,8
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
h²=АМ·МВh =√3,2·1,8=2,4СМ=2,4
S сечения= СМ·SМ:2S сечения= 2,4·8:2=9,6 см²
Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей.
Просто нажмите на кнопку "Подарить".
Просто нажмите на кнопку "Подарить".
17.12.2022